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ABSTRACT

The integral method is applied to obtain a general analysis of the
three-dimensional, compressible, laminar boundary layer with mass in-
jection. The equations are expressed in terms of the streamline coordin-
ate system and profile parameters are introduced for the streamwise
velocity, the total enthalpy and the secondary-flow velocity profiles. As
an illustration, the present formulation is applied to three-~dimensional
flow in the forebody region of a blunt body. The effects of mass injection
and streamline curvature, including the effect of an inflection point in the
outer inviscid streamline, are analyzed. The nonsimilar nature of the

three-dimensional boundary-layer flow is observed.
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I. INTRODUCTION

Analysis of three-dimensional boundary-layer flows has been the
subject of increasing interest because of its application to lifting vehicles
entering the atmosphere with hypersonic speeds. Review articles are avail -
able, for example, by Cooke and Halli, Magerz, Moore3, and Rosenhead?.

Many analyses on three-dimensional boundary-layer flows have been
performed for special geometries, where simplifications in the governing
equations are possible, such as yawed infinite cylindersS_7 and flat plates8_
Numerous analyses are also available for other special cases, as, for example,
a blunt-nosed cold bodyiz, and flows where the secondary-flow (transverse)
velocity component is assumed to be small compared with the streamwise
velocity13-22. Flows in the stagnation region have also been analyzed23_26.

The complexity of the equations for three-dimensional, compressible
boundary-layer flows makes it difficult to obtain general, analytic solutions.
The present analysis treats the full three-dimentional boundary-layer equa-
tions, including mass injection at the body surface, by employing the integral
method. Although the method is approximate, involving assumption of the
profile forms for velocity and temperature, it nevertheless yields satisfactory
nonsimilar solutions for the boundary-layer flow. Assumptions concerning
similarity or local similarity of the flow characteristics or the magnitude
of the secondary-flow velocity component are not introduced in the present
analysis. For simplicity, however, the ideal-gas equation of state is
assumed.

The basic integral equations are derived in Section II-A. In Section
1I-B, the choice of profiles is discussed and in Section II-C, the final formu-
lation of the integral equations is made, along with application to several
special cases and comparison with previous results. In Section II-D, sample
solutions are obtained for flows on an Apollo~-type blunt body and a discus-
sion of the results is presented, The effects of mass injection on three -

dimensional boundary layers are discussed in detail,



II. ANALYSIS

II-A Basic Equations

The curvilinear coordinate system used in the present analysis is
shown in Fig. 1. The #-coordinate coincides with the local external inviscid
streamline projected on the plane tangent to the body surface. The
A¢-coordinate is also in the tangent plane and is normal to #, and 3-coordinate
is in the direction normal to the tangent plane. In the special case where
the inviscid flow is irrotational, the 4-constant lines then become the potential-
flow lines. The corresponding velocities are «,+ and w. The line element

is given by

2 2 2 2
(d“dl) = (eld’ll) +(e,_a£'7‘) -f-(dg«) (1)
For the case of a nonreacting gas, the equations for a compressible,
three-dimensional boundary layer arei’ 2,27
Continuity
r—— ue e - -
e, S« (pue)r ee, dy (prre) + 5y (pw) =0 (2)

4 -momentum

PU du P¥» du Su 2 | 3p, 3/, o«
e Sx e Sy TPy TR PUV K P e B T 5y 33/ (3)

%—momentum

LU PY dw A . P 3 5 .
€ 3z ' e, 57}‘+PW5;—+KL,00(4/~—K',OM :_Esgfa_}_(/asg_ ()

3/-momentum
22 =9 (5)

Energy

“ IH v H -
LU oM pv M wﬁ__a.ﬁa_f/)__a[ (-5 a(azw,)] ()

) 9% e, 37+ 93-3} Pr 3y



where

2z 2
H:,/Q-*u-*/”'
2
, a, az
K‘::‘ L& ’ K:l < (7)

e, e, 87/

The boundary conditions are
wle,%,0) = (¢ 4,0)
wr(2:s950) = w; (2, %)

H (¢; ’y’) 0) = 'L/b = ’&b(¢’7)

b ) = te(rag)
W’(%:?x)@) =0

H (45: ’7/10") = He ’-"ﬁ, +

Applying Egs. (3) and (4) at the outer edge of the boundary layer, and tak-

ing Eq. (5) into account, one obtains

,OeL(e 9“L = _,/_ Eﬁ
e, 3% e Ix
» _ 1 2r
K: /Oe U, - e, ay, : (9)

Substitution of Eq. (9) in Eqs. (3) and (4) yields

R -

u 2 U Ju
o« - _fe e
c 3¢+ e, 97 +,0,w'a} +K,/oav' K, pv = e, -3—;’* 9}(/“37) (10)

rPu S LY - 94/’ y
e oy + c. 87 ,aw +I< LUV = K/Ou [e /0:] 93 (11)
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Equations (6), (10), and (11) are now integrated from % =0 to ¥:=8

and, combined with the continuity Eq. (2), become

I I IR-7-) S 3
e, a¢ (/0 )+?7_— =+ “ele; aie * Kz (6/1 +ezz)

/oe 37«
2 Jdu / u
+ 9"(K'+ueez e e AL 37 5(/< + o —'—iay>
/ab au’ ﬂ,”b
5 +
/oe ue 82‘),: foel»{e (12)
! 2 / 2 | 26, i
/Oe “ezel % Voeue eli)+-é: 37’2 * ZK,_ 9,_, * Kl(ell+5o>
(94»-
2 due . _I “o\ayJ,
+ 6., Kt Ue€, 2 3 * 1
et o Pe 2 7 /Oe(.(e (13)
and
IH, 4, ( / Pe / FUe
e 32 + 8297’ + H, (K, + Ze 5, + e, 344)
(14)

/ Jdu / J
+ H, (K, * e aye t e a’;'-’)
e 2

M (ae) . L™
/oeue R"b a? b
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H :j 1-g) L L 4 H=((-0)Z L «
! ( )ue I 7 )a A 7 (15)
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It should be noted here that the momentum boundary-layer thickness (& )
is taken to be the same for both the streamwise and the secondary flows.
This seems to be a reasonable step to take, based on comparisons with the

. . 28- . .
exact solutions obtained by Hansen, et al 8 32, and other solutions obtained,

for example, by Cooke17, Beckwithig, and Kang, Rae, and Dunn16.
Further, the thermal boundary-layer thickness is assumed to be the same
as the momentum boundary-layer thickness which is consistent with the
assumption of others such as Poots33 and Libby and Pallone34. The term
B4 signifies the mass-injection flux at the body surface. When this term
is equal to zero, ie., the solid-wall case, Eqgs. (12), (13), and (14) reduce
to the equations obtained in Refs, 1 and 2.

The ¥ -coordinate is now transformed by introducing the

_f_’.
2 (16)

from which follows the boundary-layer thickness in the transformed plane

f

Dorodnitzyn variable

:or



. . . . . 35
In addition, the viscosity term is assumed to vary with temperature™ ", as

follows
Mo T
o (17)

where the subscript © denotes reference conditions and the coefficient
is taken such that the Sutherland viscosity-temperature relation is exactly

satisfied at the wall temperature T,. Thus,
/Tb T+ 5
T, +5 (18)

where .5 is the Sutherland constant.

In order to make the formulation as general as possible, the equations
are nondimensiomlized with respect to a reference condition. A suitable
reference point is, for example, the point immediately behind the shock on

the stagnation streamline. Thus, we introduce

2 u,l
0= fke Re =~ —
_ o u — Ug
vt s

Ve
V= = D =K,
w=nNZE2Z N:%Z_""’_
'01,/'% o ° (19)
and
8. . H.
M, = =& T, = —%
Lf A A A
8. Z
M= 2T =T

(20)



where terms with bars signify normalization with respect to the reference
-%— etc. In addition, the term Ez will be introduced

condition, e.g., A =
€2
as Ez"'e';: where e,,

is the metric coefficient at some convenient point
in the flow and is a constant. Then Egs. (12), (13), and (14) become, after

some rearrangements,

2 M, M
9N : 2 3 [ _ it e 2 ]
e, d(x/L) + 0 e, (x/L) L R Ye M. E,

o
e, M, a(y/l) @b €, “e)

) e 2 . 26 a[(ﬂ-Mn@/e]
e’L Mll a(’?’/l) EB’U ,ue /oc] - Mue:. 8(7/'2)

oM, 0) My, £ ) 2 s
€, aﬁ‘/l) * e, 36&/!) Iz&t

_ Mzzﬂ- P> z _ _ aCQ.M,_{/R_e)/ZJ
P»e,ae ] e. a(y/1) " (22)

and



(T, n) T 0 E) - -
e,3(x/2) € 3wl V’“ fe “e Ez]

= /ob) A ! (ae
A, éﬁeﬂ [rb 87)6 + We,

La _2 51 - 20)
ol v N e e 7y

(23)

It may be noted here that the integral equations, Eqgs. (21), (22), and (23),
have the following properties.
i. They can accommodate mass injections at the body surface.
The term W contains the mass injection flux and appears
in Egs, (21) and (23).

ii, They can be used for both laminar and turbulent boundary-layer
flows. In the case of a turbulent flow, some suitable correlations
may be used for the reference temperature, ( ) gv)b

(ge> to obtain the solutions. (See, for example Refs 36-41).

The integral equations yield integrated effects of the flow character-

istics from an upstream location to a point of interest in the flow field. In
obtaining meaningful solutions, however, it is also important to account for
local effects such as rnass injéction at the body surface and local pressure
gradients tangent and transverse to the streamline. For this latter purpose,
the so-called ''compatibility conditions' at the wall are introduced, by‘
specializing the differential equations (6), (10), and (11) to the body surface.

Thus, we obtain, in dimensionless forms,

) - o (5
LN

(24a)

(24D)



W@s‘b’ ,,< ) ( X/ ),, @;),, (24c)

where

pz(@\z & 0 i,
/) A, e /L)

- O ,0;42
@ =bh (fz>

For the region near the stagnation point in hypersonic flows, Me//-(e

w0

(25)

is much smaller than unity and, thus, the last term in Eq. (24c) may be
neglected without loss in accuracy, although the Prandtl number may not

be unity. In the case where the Prandtl number is unity, of course, the
term is identically zero, In obtaining the examples included in this report,
the term containing LL:/He is neglected in order to save computation time,
However, if necessary, this term may be left in the equation and the formu-

lation will follow the same procedure. Thus, we have
( ) | (a’e
26
rb a'l (26)

We now have derived six equations, viz., Eqgs. (21), (22), (23), (24a),

(24b), and (26). Thus, six unknown parameters describing the flow char-
acteristics may be introduced and,theoretically, the problem is determinate.

It is the manner of choosing these parameters that forebodes success‘ or
failure in obtaining meaningful solutions for the flow-field characteristics by
application of the integral method. In the following section,several techniques
that have heen applied in the past will be reviewed and the choice of profiles

for the present analysis will be discussed.



II-B Choice of Profiles

Application of the integral method to the boundary-layer flow involves
assuming forms of the velocity and total enthalpy profiles in terms of par-
ameters which characterize the fluid motion. The commonly used techniques

3 -
in two-dimensional and axisymmetric cases are due to ]E’ohlhausen1 22, 34, 42 46,

Thwaites ™'~ %7, Timman°", Dorodnitzyn51'53, and Head’*™ %%, 1In the
Pohlhausen technique, the profiles are assumed in polynomial forms, and
parameters are expressed by satisfying the boundary conditions at the body
and at the outer edge of the boundary layer. These parameters are then ob-
tained by solving the integral equations. This approach has been used most
extensively because of its great simplicity in application. In Timman's ap-
proach, the profiles are expressed in terms of the error function and all de-
rivatives of these profiles asymptotically approach zero at the outer edge of
the boundary layer and,thus,the boundary conditions there are identically
satisfied. The Dorodnitzyn scheme involves dividing the boundary layer into
strips,and in each strip the polynomial distribution is assumed. Thus, this
approach is an extended version of the Pohlhausen method. The method due
to Head introduces doubly-infinite family of profiles based on exact solutions
and,by satisfying the compatibility condition and the integral equation, solu-
tions are obtained. ILastly, the Thwaite's approach is based on determining
the variations of the assumed parameters from similar solutions, thereby
obtaining a simple quadrature for the solution,

With some simplifying assumptions, such as incompressible flow, no
mass injection, or small secondary-flow velocity, these approaches have
been extended to the three-dimensional cases (see, for example, Refs. 1, 13,
15, 17, 18, 20, 22, 40, 44, 56-61). It has been found from these analyses, es-
pecially from Refs. 1 and 58, that when the flow is expressed in the streamline
coordinate system, the streamwise flow behaves like a two-dimensional
boundary layer, even when the other component, i.e., the secondary (or
transverse) flow, is appreciable. This is an important result, since it sug-
gests the application of the technique used in the two-dimensional case to the

streamwise flow in three-dimensional flow with rea sonable confidence. It

10



also suggests that interpretations of the results from the two-dimensional
flow analyses may be applicable in a qualitative way to the streamwise flow
in the three-dimensional case. In particular, the relative merits of these
various methods may be inferred for the three-dimensional case from their
relative values and accuracies when applied in the two-dimensional case.
By comparison of these methods, it was found that their relative accuracies
varied significantly for the adverse pressure gradient cases. However,
when the pressure gradient was '"favorable', that is, when the flow was ac-
celerating, all of these methods showed remarkably similar results. Of
course, the more elaborate (and thus more laborious) yielded slightly more
accurate results. On the whole, however, one of the simpler methods, i.e.,
the Pohlhausen polynomial method, gave very reasonable results in two-

dimensional flOWS34’ 35, 4:5, 49

, even in the case of mass injection at the body
43, 46, 62

surface Thus, because of its overall advantages, such as sim-
plicity in application, resultant saving in labor (computation time), and
reasonable results, it was decided to apply the Pohlhausen polynomial method
to the streamwise-flow velocity profile and to the total-enthalpy profile.

For the secondary-flow velocity profile, however, it was anticipated that
there would be, in general, an inflection point in the streamline which brings
about reversal of the flow direction of the secondary-flow velocity component,
In order to accommodate this, and in order to give more accurate profile
distribution for the secondary-flow velocity, Ti]rnman'sés_64 approach (sub-
sequently refined by Za.a‘c:15 and Cooke18) is extended here for the compres-
sible case with or without mass injection. Comparison is also made with

the analysis of Ref, 16 for the special case of small secondary flow. In the
following, the profiles will be determined in terms of the parameters which

describe the boundary-layer flow characteristics.

The Streamwise Velocity Profile

We introduce the fourth-degree polynomial form

4
-« m 27
U‘«e‘Z“m'Z (27)
m=z=0

11



The boundary conditions are

n=0: U= 0
n=1: Uu=I
U _
aq"O
ey _
ap* 9 (28)

In addition, we have the compatibility condition at the wall, i.e., Eq. (24a).
Substitution of Eq. (27) in Egs. (24a) and (28) gives

a, = 0
L
Wa, - P
4 =g
a; = 4+pP-a,(3+w)
2, = —3—% +a,(2+—g-
(29)
Therefore, we have
U= m(p)+Am, (7) (30)
where
m,(7) = q2(6—8q+3q’>
(31)
3
m, () = 1 (-7)

12



The functions m, and 7, are plotted in Fig. 2 and U(g) in Fig. 3.
Thus, the streamwise velocity is expressed as a function of only one par-
ameter, A. The physical significance of A 1is that it expresses the
magnitude of the velocity gradient at the body surface and,therefore,is a
measure of the streamwise shear stress. It is interesting to note here that
when there is no mass injection at the wall, W = 0, then A 1is dependent
only on P , the pressure-gradient parameter. On the other hand, if the
mass injection is very great, the other limiting case is obtained, i.e.,

A—> 0, as W-—>ow. In other words, as mass injection increases, the
streamwise skin friction decreases and in the limit approaches zero, a phy-
sically reasonable result. Another interesting result is that when there is
no streamwise pressure gradient, i,e., P= 0, A = E—% . If in addi-
tion, W = 0, that is, solid wall, we have the result, A =2, and the velocity
profile for this case agrees with the Blasius profile. It may also be seen
that regardless of the value of W, A = 0 for P = -12, signifying the separ-
ation of the flow due to adverse pressure gradient. ILater in Section II-D,
numerical comparison of the value of A  will be made with other results
for the more general case of finite pressure gradient and mass injectidn.

We have thus expressed the streamwise velocity profile in terms of
one parameter, which combines the pressure-gradient characteristic and the
mass-injection characteristics in the flow, It should be noted here once
again that, based on previous analyses, the above one-parameter expression
is expected to yield reasonable results. Caution is advised in the adverse
pressure-gradient case, although Poots33 seems to have obtained good re-

sults from the application of the fourth-order polynomials for the profiles.

The Total-Enthalpy Profile

Here, we introduce the fifth-degree polynomial form such that
H 5
m
0= =2 b, (32)
m=0

The reason for taking this particular form is discussed later.

13



The boundary conditions are

n=0 ; 6=6,

n=1:3: 8 =1
26
aq =0
3’6
e =0 (33)
The compatibility condition for the total enthalpy is given in Eq. (26).
We thus obtain
b, = 6,
= B
W
b, =% b
- - - 2
b, = 10(1-b)-(6+Fw,)b, G4)
3
b, =-15(-b)+B+Lw, )b
W,
bs = 6(-86) -(3+%),
where
W‘P = RJ; w
and Eq. (32) becomes
6“9,, B8

14



where

m) = & (1-p)’
m@) = n(-6q' 87~ 37%)

mg(1) = 0" (10-159 + 67°) G6)

The distributions of these functions along n are shown in Figs. 4-6.

In contrast to the streamwise flow case, where the fourth-degree polynomial
form is used, the total-enthalpy profile here is expressed in fifth-degree
polynomial form. The reason is as follows: if only fourth-degree form were
used, all bm’ s can be determined in terms of W, P, 6, and A and,thus,the
problem is reduced to obtaining the solutions to the streamwise-momentum
integral equation., Once the solutions are obtained for A,W, P from the
equation, then, it is a simple matter to construct the total-enthalpy char-
acteristics, and the energy equation, i.e., the total-enthalpy integral equation,
is ignored. This procedure has been used by Cohen and Reshotko48 using
Thwaite's approach and the results show, in some cases, poor accuracy in
the energy field while yielding the velocity field accurately. Others (such as
Tan165 and Poots33) use the energy equation and the fourth-degree form.
They then drop the compatibility condition, but in its place use the '"kinetic-
energy' integral equation and obtain good results. Physically, the energy
equation and the compatibility condition serve two functions; the energy in-
tegral equation describes the integrated effects of the energy of the flow
from upstream to the point of interest along the streamline, while the com-~
patibility condition describes the local flow effects. It is thus recognized
that meaningful results may be obtained by considering both equations. This
procedure has,in fact,been followed in two-dimensional cases34’ 49. In the
present analysis, therefore, both the energy integral equation and the com-
patibility conditions are retained and considered by assuming a fifth-order
polynomial form for the total-enthalpy profile. It should be noted, however,

that the results for the energy field can be interpreted only in conjunction with

15



the streamwise momentum results,as well as the secondary-flow momentum

results,

The Secondary-Flow Velocity Profile

In the present analysis, we assume a modified form of Timman's
profile, such that

V=d— =6 a)-F g (37)

where 2

£@) = ay e "

$0) = [fe ) w1 €|
a = 3w/2 (38)

Figure 7 shows the distributions of £ and 9 along 1- The
profiles of V(n) for various values of G and F are plotted in Figs.
8-10. The terms G and F are two free parameters which will be de-
termined from the integral equations and the compatibility conditions. In
fact, the compatibility condition can be used at this juncture to eliminate one
parameter, thus leaving the integral equation to solve for the remaining par-
ameter along the streamline.

Substitution of Eq. (37) in Eq. (24b) yields

W(a,GJrF):-—Q—azF (39)
Thus,
_ _Q*tawec .
F = PO (40)

Since the wall-shear for the secondary flow is %\r/[—>b =aG+F >
use of Eq. (40) gives

3
c _(av _aG-Q
- e T at+w (41)
Thus, the profile becomes, from Eq. (40),

V@) = G &) +W6 +Q,) 3(1) (42)

16



where

Q’ = a* +W (43)

It should be noted that presence of an inflection point along the
streamline may cause the secondary-flow velocity profile to be S-shaped
(or "cross-over' profile) near the inflection point. Thus, in order to obtain
realistic velocity distributions, it is necessary for the profile to exhibit the
S-shaped form, as well as the C-shaped form. This requirement is satis-
fied by the profile form assumed in Eq. (37) or Eq. (42), and the problem
now is to determine from the integral equations the values of these par-
ameters, i.e., G and F , along the streamline,

With the chosen profile forms, it is now possible to calculate various
characteristic ''thicknesses!'' from these profiles in terms of parameters A,
B, G, etc.

From Eqgs. (15) and (20}, we have

M, = L'u(/-u)an =P+RA-PA"

Ma ’jﬁUV"'l = (B +AR+W,R +AWR,) +Q, (B +AR)
M. 5 vdy = G (R +W,R) +Q,R
M,ff'V(l—u)df] =M _-M, )

M

22

('Vap= ' Grawh rwR) QR +26Q, G 4HR.)

T, = U= (-0)(%, 1R)- B, AR 1w, By 1AW, )

T, =£'v(/-e)d'7= (1-8,) [G(f?q +W,Eo)*Q:’3o]

-8B [GQ’;,'PWPB_,,* W,R, W W Be)*Q, (B, W, ‘34)]
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and
CURURRE TR IS
o e

/
M= ((C-U)dn = R, AR, +6,R, +8(B, +W,2,)

(44)
where the ideal-gas relationship
g H W
= U = (9 -U*) &—e )v
has been used. The coefficients, i.e., L. ,, are included in the Appendix.

7
II-C Integral Equations

Substitution of the profiles chosen in Sec. II-B into the integral equa-
tions (21), (22), and (23) yields

on’ 20" 5 [ - :.4-”; ,%z,z] ZF,
e, 3(%/4) " a@/) b @ M E, = (A+w)

Il

20M, Btneu.  20M, dbueusg _ 20 O MuSRl)

T e M, a/e) ~ &M, T o) M, € d(WY)
(45)
B(leﬂ) M,_,D. BE&U/%“,E] F (@36-£%>
e a(¢/Z) * 9(¢/[) D Q M”"'M) at+w
_ M Swewid] | _SMa0)
e, aW/2) €. a(W/x) (46)
s.0) 1.0 s E] _ R (3 e
< 3(75/1’) o a(¢/¢) a \R, b
O a[lwe,ueﬁl _ | a(r. Q)
e. o) e. (W) (47)
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where

() 77

e e ¢
and 4, 7 are replaced by ¢ and ¥ , respectively. The term ¥
takes on a physical meaning of stream function while ¢ can, in the case
of irrotational outer flow, signify the velocity potential. Since the compat-
ibility conditions have already been incorporated in Sec. II-B, they are not
written here. Thus, there are three integral equations,and the parameters
to be determined from these equations are )., and B and the problem
is mathematically determinate. Before discussing the method of solution,
it is instructive to consider some special cases for which analyses are

available.,

CASE 1. Incompressible, No Mass Injection, Small Secondary Flow

This case has been analyzed previously by Cooke18. Under the condi-
tions specified above, the present formulation, i.e., Egs. (21) and (22),
reduces to his equations by establishing the equivalence between the re-

spective terms. The correspondence is as follows

Cooke's Formulation Present Formulation (when
(Cooke's Notations) specialized to Cooke's conditions)

L)

e
4
2+ A A
G
4
2

a




Cooke compares his results with the exact solutions of Hansen and Herzig
and obtains good agreement. Since the present formulation reduces to
Cooke's formulation when specialized to his conditions, i, e., incompres-
sible, no mass injection and small secondary flows, the present formulation
will yield the same results as that of Cooke18. Zaat15 earlier had con-
sidered the same case with the assumption that the inviscid outer flow is
irrotational. In this case, the ¢ -lines are potential lines and,furthermore,
e, = a;/ (see Refs. 1,2). The streamwise integral in the equation in this

case becomes, in the present notations,

o kd 2
-:975— (ez a: A) = 35.9 e:'a; Ny (48)

and a simple quadrature is obtained for A , which is a measure of the

boundary-layer thickness.

CASE 2, Incompressible, No Mass Injection, Axisymmetric Flow

This is a more specialized situation of Case 1 in that now there is no
secondary flow. In this case, we may take the azimuth angle 14 in a
circular section perpendicular to the axis as stream function. Then we have,

for the line element,

(@) = <ff)z+ (rdy) (49)

where r corresponds to the cylindrical radius from the axis of symmetry

to the body surface, Comparison of Eqs. (1) and (49) gives

€ =r (50)

Equation (48) then becomes

A 359 "Lsd
)T M Ue &X (51)

(]

which is similar to Truckenbrodt's resultéé. The term X  signifies the

distance along a streamline.
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CASE 3. Incompressible, No Mass Injection, Two-Dimensional Flow

In this case, we have, for the line element,

(24) = <d¢)z+ @) (52)

“e

which gives, for potential flow,

e, = | (53)

Hence, Eq. (48) becomes

41_35.9 X s
S X (54)

From Egs. (20), (44), and the Appendix, we have

8, = AM,= A (0.1143 + 0.00953A - 0.00397A%). (55)

The range of interest for A is between 1 and 3, the value 2 corres-
ponding to the "Blasius' case of flat-plate with no mass injection. Within

this range, an average value for M" yields (M”) = 0.115 . Substitution of
v
this value in Eq. (54) gives &

9,z 0.45 X &
,)I =3 fue da X (56)

e

65 47

which agrees well with the results obtained by Tani ~ and Thwaites™'.

II-D Solutions and Discussion of Results

We now consider the method of solving the integral Eqs. (45), (46),
and (47). From the inviscid flow-field analysis, the quantities at the outer
edge of the boundary layer are assumed known, including the streamline
curvature distribution (D, ) and the streamline divergence-convergence
function ( E, ) . With known initial conditions, integration of the equations

is then carried out along individual external streamlines ( J» = constant). The

last term in each equation is of the form aaw { } and is not known a priori.

58, 67

Thus, this term is dropped at first and is accounted for after solutions

have been obtained along several streamlines., It will be seen later in the
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examples calculated that the saving in computation time,as well as simplicity
of application,is achieved by this method. It should be remarked here that
because only the gradient term is dropped at first, this method does not in-
volve the assumption of small secondary flow, but rather is an iterative
method of solving the equations.

As an application of the integral method formulated in Eqs. (45), (46),
and (47), analysis will be made of a hypersonic flow around a blunt body at
angle of attack with mass injection at the body surface assuming irrotational,
inviscid outer flow and an ideal gas. Any other conditions or assumptions,
such as the value of the Prandtl number, will be introduced as the analysis

?

proceeds. From the condition of irrotational flow we get

€ =u (57)
e
and thus ‘
K = ] °e, | Il
188, Y T U, OV (58)

We shall now estimate the term a,oe/a}v . Using ideal gas relationship,

we obtain

| 9P _ I 9Op I ke
L Y P ¥ A, ¥ (59)
From Eq. (9), we have
i
EYR = e, K, f U, s
and from the relationship /ﬁ.e = H, - ——L-Lf—— , we have, for
H. = constant,
k.. duw
- - O Le _ 2
aw = u.e aw = C,_K, ae (60)

Combination of Eqgs. (59), (9), and (60) yields the following result

I 9r _ [He =
ze, sy - NG, Ol (61)

Thus, the transverse gradient of o may be conveniently expressed in
e

terms of K, . It is noted that near the stagnation point the term & is

usually much less than unity and,thus, for air Eq. (61) is smaller than K, -
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Applying the relationships derived above in the integral equations
(45), (46), and (47), we obtain

'F) _ 2FF 2(-8)0"D,F,M,,
(—(l = M" (A+W)+ /6

62
I X M, (62)
3
_9 _ - F.Fs (2G6-Q
5x M QF) = -FF -7 (T, (63)
3 _FF B
ax TAF) =4 (,b +W9b>*/57;ﬂD,F5 (64)
where
F ~ Ay
T - @ /5' u
e e
_ _z+% 1+ i 2
fe lamat® e ®]
- _2 2
Fo= 24E,
(65)

H A
,—A:e; :D,ﬂ l:Mu “'M’*" I-/s H:) M’-’-:]

1

Fy

Fs = /‘3 a, E,
and, as discussed previously, the last term in Eqgs. (45), (46), and (47)
has been dropped and will later be accounted for from the solutions obtained
along the streamlines. A new variable X is introduced such that dX=e, Z@/,
which signifies the length along the streamline. This is strictly for conven-
ience in calculation, and no approximation is involved in this step68. From
the inviscid outer flow field, distributions of the various terms, such as

,CZ s D, Ee » etc., are considered known. The dependent variables are
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1. N , from which A, As W, M, can be calculated,

2. Mz, s Which in turn depends on &G and {1, and
3. T, , which will enable calculation for B .
Thus, there are three essential unknowns, (), G, and B . Since there

are three equations, (62), (63), (64), the problem is now, mathematically
speaking, solvable. Because of the complexity of the equations, numerical
solution on a digital computer is carried out in the present analysis. Com-
putation time for a typical case was about one minute on IBM 7044 computer.
In order to start the integration, it is necessary to know the initial
values. If the integration were to start from an arbitrary point along the
streamline, the initial conditions at that point are presumed given from the
upstream conditions. However, if the integration starts from the stagnation
point, the initial conditions can be determined from the integral equations
themselves. Essentially, this involves dropping the slope terms for n> T, »
and M,, for the first approximation and then,by numerically differentiating
these terms, obtain the second-order approximation, and the iteration is
repeated until convergence in these values is achieved. Further details are
included in Refs. 15 and 60. It has been repeatedly found by Cooke18 that
the main part of the solution is not sensitive to the way in which the solution

is started. This conclusion was reinforced by Head?*

who used, as initial
conditions, the Blasius velocity profile despite the fact that the pressure
gradient at the initial point was not zero. He found that after a very short
distance the solutions approached those obtained using the more elaborate,
iterative technique. In the present analysis, both the iterative technique and
an approximate technique have been tested for a specific problem. For the
approximate technique, the initial values used were obtained by taking a limit
of the Egs. (62), (63), and (64) to the stagnation point. It was found that both
techniques yielded equally reasonable results for the main part of the solu-
tion along the streamline and it was decided to apply the approximate tech -
nique in obtaining the initial conditions in the present analysis because of the

saving in the computation time and simplicity in application.
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Examples

The formulation derived in Egs. (62), (63), and (64) will be applied
to a flow on an Apollo-type blunt body entering the atmosphere. Specifically,
the conditions assumed are:

Altitude: 200, 000 ft

Velocity ( w,): 30,000 ft/sec (0.915 x 10

Body radius (¢ }: 15.5 ft (474 cm)

6 cm/sec)

Angle of attack: 20 degrees
Under these conditions, the properties of equilibrium air behind a normal

69 . .
shock wave are, " in c. g. s. units

2 = 16, 81
7"2; = 1099
T
7 = 33
with
. = 2.26 (10%) [dyne/cm?]
U, = 0,915 (10°) em/sec]
Lo = 3.14 (10—7)‘_.gr/cm3]
s = 1.6 (10"4)[gr/cm-sed]
T, = 2.5 (10%) k]
Re, =8.8(10°)= p u d/u,
and
2, = 2.49 (105)[dyne/cm?]
u, = 5,45 (10%) Em/sed
P = 5.27 (1070)[gr/em?)
M, = 0.916(10"3)@r/cm—se<_::]
T = 8.25 (103)[°K]
Re = 1.44 (10%) = g u, L/ 4,

if2
where /a‘,//a” = (7:/7;) was used across the normal shock. With these
property values, the Eqgs. (62), (63), and (64) were integrated along the

streamline from the stagnation point assuming an ideal gas for cases of
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arbitrarily chosen mass-injection rates, ranging from the solid-wall case,
(N = 0), to a uniform 15 per cent injection rate (N = 0, 15). Variable mass-
injection fluxes along the streamline were also analyzed. In all the examples
considered, the wall temperature was agssumed constant at one-tenth of the
free-stream stagnation temperature. The distributions along the streamline
of D,» Ee s ,E'ze » E, , etc. were assumed expressible in analytic forms, e.g.,
E.e: % X =B X*. This is strictly for convenience, since these distribu-
tions can be easily put on the digital computer in tabular forms or in curve-

fit expressions. Specifically, the following distribution forms are assumed,

in the present example, based on an inviscid analysis70:
@, = 56.5 X -20 X%
E, = 1, 0 -exp(-15X)
D, = 30X {exp(-iOOXz)- X—O:I(’—b—}
_ 5 v (66)
Lo = 1,022 - 0.8 X
'55 = 10,22
Ay = 0.1022
e, = 0. 10

These distributions are shown in Fig. 11. The streamline curvature
function I, is expressed in the particular form shown in Eq. (66) in
order to allow for the change in the sign of D, , D, = 0 denoting the streamline
inflection point, and the above appears to be a reasonable, general form.

It should be noted in passing that the local radius of streamline curvature
can be obtained simply as ,Q/D, .

The results obtained are shown in Figs. 12 through 17. Figure 12
shows the distributions of () , the dimensionless "boundary-layer thickness"
in the transformed plane, for various mass-injection rates. It is noted that
n increases with increasing N , a physically reasonable result that has

been obtained in previous analyses“)’ 71.

It may also be seen from Fig. 12
that ()} , for large mass-injection rates, at first increases,then decreases
along the streamline. This is due mainly to the second term in Eq. (62),
containing D, and _ﬂ_z. Because,for increasing injection rates, NI in-

creases and because, in the present example, D, is comparatively large far
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downstream from the stagnation point, this term is seen to influence the
magnitudes of the boundary-layer thickness along the streamline. When

Az QO ,e//ég is transformed back into the physical plane by the relation-
ship 8 =IA£¢'. dZ , with g decreasing with X and 4 held constant
in the exaomple, the thickening rate of & is notas great as that of A.
Thus, this demonstrates the greater sensitivity of A  to the flow conditions
in the transformed plane than in the actual physical plane, a useful result,
enabling determination of the effects of various conditions in an exaggerated
manner in the transformed plane.

Figures 13 and 14 describe the variations of the pressure-gradient
parameter (P) and the mass-injection parameter (W) along the streamline,
These are combined to yield the streamwise wall-shear parameter (A) from
the relationship A = (12 + P)/(6 + W). It may be seen that Pand W exert
opposite influences on the streamwise skin friction. The parameter A can
be related to the physical streamwise wall-shear stress 7%, by
A/A = ’7’,b pe/(pb /"b“e>' Figure 15 shows the effects of various rnass-injec:itéi)o?1
rates on the streamwise wall shear. Consistent with previous analyses 7,

the results show lower values of wall shear for greater injection rates.

Figure 16 shows the results for the heat-transfer distribution along
the streamline for various mass-injection rates. In particular, the heat-
transfer parameter B mmay be related to the conventional heat-transfer
term, i.e., Nusselt number, by B/A :Na('% -e,) ’ot’/(/%j)‘ It shows that the
heat-transfer rate decreases for increasing injection rates and, at uniform
15 per cent mass flux at the wall, the heat transfer rate is practically zero,
signifying a nearly-insulated condition. It is noted that the decrease in 8
with increasing mass-injection rate is greater than that of A , so that for
a certain value of mass flux,the body may be practically insulated, while
there is still a finite skin friction. This result was also obtained in a pre-
vious analysis in Ref. 16.

Figure 17 describes the distribution of the transverse wall-shear
stress along the streamline. Also shown in the figure is the prescribed

streamline curvature distribution D, , which goes through zero, i.e.,

N
¥
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inflection point, at X & 0,076 corresponding to a distance of 36 cm. from
the stagnation point in the present example. It is seen that D, is at first
increasing and then becomes negative, while the wall shear is negative and
later becomes positive. This is a reasonable result, since it follows from
Eq. (9) that D, = K,£ and the transverse pressure gradient —-Iégl— have
the same sign. Since the transverse-(or secondary flow) velocity component
is in the direction of lower pressure, this means that 4 and 'e—,éaﬁ_ possess
opposite signs. The results in Fig, 17 confirm this conclusion. An inter-
esting result is noted immediately after the inflection point in the figure
where (¢ (denoting the direction of 4~ near the wall) and 2, (and thus
?,a%z_) both have the same signs. This signifies the nonsimilarity effect of
the flow taken into account in the present analysis, where the influence of the
upstream momentum is still present at the inflection point. After some dis-
tance beyond the inflection point,this flow sufficiently adjusts to the change in
the streamline curvature P, , so that 2~ and D, again possess opposite
signs. This result was also observed by Cooke{18 in his approximate analysis
and by Hansen and He:r'zig11 in their exact solutions for the incompressible,
solid-wall case. Thus,the present analysis describes the nonsimilar effects
of the inflection point on the flow even in the case of mass injection.

Another interesting result is observed in Fig. 17B where increased
mass-injection rates bring about decrease in the distance between the stream-
line inflection point and the point at which the secondary flow reverses its
direction, so that the two points virtually coincide for uniform 15% injection
rate. Physically, this signifies that the lower-velocity mass being injected
into the flow responds more quickly to the change in the streamline curva-
ture than the outer fluid.

As in the results for the streamwise flow and the total enthalpy, the
magnitude of the transverse velocity gradient at the wall, i.e., the trans-
verse wall shear, decreases with increasing mass-injection rates. The
angle between the inviscid external streamline and the limiting streamline
at the body surface may be determined from the relationship

oL = Zb,m = (——g—)
A (67)
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Figures 15 and 17 show that the absolute magnitude of o increases with
increasing mass-injection rate, a result obtained due to a slower decrease
in C compared to a more sensitive change in A  with increasing mass
flux. Thus, the limiting streamlines tend to diverge more with mass injec-
tion than without, exhibiting greater three-dimensionality of the flow. This
result has also been obtained in a previous analys1516 where small secondary
flow was assumed. It is to be noted that o reaches a certain finite
value as mass-injection rate is further increased, signifying that the sur-
face streamline has a limiting angle with the outer inviscid streamline in

the case of very large mass-injection rates. This is due to the fact that both
A and ( vary only slightly as N becomes very large,.

Comparisons will now be made with other solutions for A , the
boundary-layer thickness, and A , the shear-stress parameter in the
streamwise direction. In particular, the values at the stagnation point will
be compared. Using the Howarth-Dorodnitzyn similarity transformation72 ,

i, e.,

&
g:f /Ob/abuer:d,w

*

_ R4 (7 p
'f’/z—gf@“? (69

and Eq. (16), we obtain

e 72 E A (69)

In the stagnation region, we may use approximately ry,~<,Ue M(g:e) 4
=0

Hence, Eq. (69) becomes

if2
'?* N 20 G2,
e Po (70)

For the example used in the present analysis, the value of the square-root

R

quantity in Eq. (70) is approximately 2. 80. Now, from the results, A for
N =0is 1.20 at the stagnation point, while & & 2.1 for N = 0,01,
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On the other hand, the similarity solution obtained in Ref. 16 gives, for

_ * 28 He dUe _ " - -
6, =0.land g=3% Je S22 - 05, gf2 330for £=0 (N=0),
and q" ¥ 6,0 forf, =-0.5(N¥0,01). Itis thus demonstrated from Eqg.

e -
(70) that the results for A  obtained in the present analysis are reasonable.

We shall now compare the streamwise wall-shear parameter, which

is termed A in the present analysis and its corresponding quantity is
usually called «F: in the similarity analyses. Specifically, we wish to
determine the actual streamwise skin friction defined to be 7;6 _—./ab@u/;;,)b,

In the present formulation, 7 is expressible to be

tb

£ Ue M
70”):,_672_",4 (71)
e

while similarity transformation of Howarth-Dorodnitzyn gives, from Eq. (69)

Aol e, Ue v HMu%e x (72)
T = f = f— rz 'Fb
b 7/25 b ’ae A e

Thus, from Egs. (71) and (72), the comparison to be made is between A
and f[: {.‘Z . The case of zero pressure gradient and zero mass injection
gives P = 0and N = 0, and therefore A is identically 2.0. On the other
hand, from similarity analysis, this case corresponds to 'Pb = 0 (no mass
injection) and ,5* = 0 (zero pressure gradient). From Ref. 73, we obtain
q: = 4.20, f, ¥ 0.47, and hence n¥ 4‘: ¥ 1,98, which is close to 2.0,
a value for A obtained from the present analysis. The mass injection case
will now be compared. Specifically, 5% injection rate, i,e., N = 0,05
gives, at the stagnation point, A £ 0,27, while,from similarity z.-mal*y"sis,16
NS 2 11.0and #' =0.025and hence n¥f, =0.275 for "= 0.5
and 95 = 0.1, confirming the reasonableness of the results obtained in the
present analysis,

It is thus shown that solutions can be obtained along any streamline
based on the integral method formulated in the present analysis. After cal-
culations have been obtained along several streamlines, the suppressed

terms, viz., ga.p-{ }, in Eqgs.(45)@6)ard (47) can be determined, and, if these
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terms are not small compared to other terms in the equations, the calcula-
tions can be performed once more along thé streamlines until convergence is
reached. This has not been carried out in the present analysis, since this
type of iterative procedure has proved to be successful and reasonable58’67’ 4
and since the conditions in the present examples were rather arbitrarily

assigned in order to test the applicability of the integral method.

Finally, it is to be remarked that the present formulation should be
extendable to the case of dissociated flow, It will require assuming a suit-
able form for the species profiles, and the modification of the definition of

Ml and other property terms. Thus, simultaneous integration of the equa-
tions along the streamlines should yield approximate, nonsimilar solutions

for the flow characteristics, including the species concentrations.

CONCLUSIONS

An analysis of nonsimilar, three-dimensional, compressible, laminar

boundary layers with mass injection has been formulated by employing the
integral method, Comparisons were made with other analyses performed

for specialized cases such as incompressible, solid-wall, or small secondary
(transverse) flows, and the present formulation was found to be in good
agreement. As an application of the formulation, sample solutions were per-
formed for the forebody flow on a blunt body with variable mass-injection
rates. The results demonstrate significant influences of mass injection and
the streamline curvature changes on the flow characteristics, such as de-
crease in the shear stresses and the heat transfer with increase in mass

flux; these results are consistent with other, more specialized analyses.
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APPENDIX

From Eqgs. (31), (36), and (38), we have

m(n) = (6- 8n+37°)

m) = 0 (-n)

2

AOE %—0-7)

m‘i(’?): ’I(" ml)

7)25(7)= qs (10—157 + éqz)

g(n) = & [ﬁ’o (ag) +@-D " '7]
£@0) = an e_;,?‘
3/7
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Then we have,

I
P, = f(/—m,)m,dq = 0.114286
o

/
P, = j (- 2m)m.47 = +0.00953
0

1
P, = j' m dp = 0. 00396825
0
Py = j" A, dny = 0. 0756331
[]
!
Py = y £m, dy  =o0.015252
(4]
)
Pg = 3’ gm dg = -0, 0064069
[+
[}
P, = f (7/ m, 47 = -0, 0021876
(]
1
P = S & 4 = 0,187903
0
1
Pg = g 2 dn = -0. 0252027
(*]
= 0. 0589253

P1o= 5 A@zd7
P,= yl «éf c/,7 = -0.0083928
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P23 Sl m, g 21
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NN
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[ 941
Pyg= jl(ms—ml)dq
P26= jl m, 40
Pag= II m, dr}

Pag= j‘ 7ﬂ35{7

§]

-0. 0037695

-0, 00026364
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